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Fig. 3. Goodput measured as the number of useful information bits reaching the BSs B.

VI. SIMULATION738

The proposed algorithm RRPL is evaluated through sim-739

ulation and compared against three competitive solutions740

TTCR [1], RNPEC [7] and ACRN [2]. RRPL is compared741

to these algorithms and evaluated in terms of the following742

metrics: i) The end-to-end delay, defined as the time that743

a packet spends to travel from S to B; i i) The goodput,744

defined as the number of useful information bits reaching745

the BSs B; i i i) The network lifetime, defined as the average746

time to battery drain out of SNs; iv) The cost, defined as the747

number of RNs R that should be added to the network. In the748

simulation results, each plotted point represents the average of749

60 executions. The plots are presented with 95% confidence750

interval. In our simulation, B ∪ S are generated according to751

a uniform random distribution. The possible locations where752

the RNs can be placed, i.e., Y , are also randomly generated753

according to a uniform random distribution.754

The algorithms are evaluated through python and an755

extended package for graph theory called networkx [26].756

During the simulation, the number of possible locations of757

RNs Y is fixed to 200. The algorithms are evaluated by varying758

the receiver γth, sensitivity threshold, the number of SNs S759

and the maximum number of retransmissions M . Three set760

of experiments are conducted: i) by varying the number of761

sensor nodes S, and fixing γth to 8 × 10−4 and the number762

of retransmissions M to 10; i i) by varying γth, and fixing the763

number of sensor nodes S and the number of retransmissions764

M to 10; i i i) by varying the number of retransmissions M ,765

and fixing γth to 8 × 10−4 and the number of sensor nodes S766

to 50.767

Fig. 2 illustrates the performance of the end-to-end delay 768

as a function of γth, the number of SNs S and M . The 769

first observation we can make from these figures is that 770

(i) RRPL outperforms all other baseline algorithms and 771

(i i) the increase of γth and M have a negative impact on all 772

the algorithms. From Fig. 2(a), we notice for all algorithms 773

that the end-to-end delay increases with the receiver sensitivity 774

threshold. In fact, the end-to-end delay have globally the same 775

behavior as the sojourn time. From Section V-C, the sojourn 776

time increases proportionally with the outage probability and 777

the receiver sensitivity threshold. On the other hand, RRPL 778

outperforms all the baseline approaches in terms of end- 779

to-end delay. Actually, RRPL chooses the links that have 780

the smallest outage probability to sustain the traffic. From 781

Section V-C, the larger the outage probability is, the higher the 782

end-to-end delay becomes. Fig. 2(a) shows that RRPL does 783

not have a good performance for small values of γth. This 784

can be explained as follows: RRPL uses more RNs R than 785

RNPEC, ACRN and TTCR, which creates long paths between 786

S and B. For small values of γth, all the links succeed to 787

forward the packets without many retransmissions and then 788

the use of long paths by RRPL negatively influences the 789

end-to-end delay. From Fig. 2(c), we notice that as M 790

increases, the end-to-end delay increases smoothy for RRPL 791

and sharply for the other algorithms. As discussed in 792

Section V-A, the decrease of the value of M results in a decline 793

of the average number of retransmissions, and thus in a drop 794

in the end-to-end delay. 795

Figures 3 and 4 show the performances of the goodput 796

and network lifetime, respectively, as a function of γth, the 797
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Fig. 4. Network lifetime measured as the average time to battery drain out of sensor nodes.

Fig. 5. Cost of solutions measured as the number of relay nodes R should be added to ensure the connectivity between S and B.

number of SNs S and M . The results clearly show that RRPL798

outperforms all the baseline approaches in terms of goodput799

and network lifetime. The use of single-tiered topology by800

RNPEC and ACRN affects dramatically the network lifetime in 801

these protocols. Fig. 3 shows that RRPL enhances the goodput 802

by more than 50% compared to the baseline approaches. 803
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Fig. 4 shows that RRPL extends the network lifetime by a804

factor of two compared to TTCR algorithm and by a factor of805

five compared to RNPEC and ACRN algorithms. We observe806

also that γth has a negative impact on the goodput and807

the network lifetime, while the increase of M has positive808

impact on the goodput and negative impact on the network809

lifetime. In fact, the increase of the maximum number of810

retransmissions M leads to the increase of the probability of811

successful reception and thus the improvement of the goodput.812

As mentioned in Section V-D, the increase of M results in813

more energy consumption and consequently leads to a shorter814

network lifetime. While the increase in the receiver sensitivity815

threshold γth leads to a larger outage probability which has816

a negative impact on the goodput and on the number of817

retransmissions. The increase in the latter yields more power818

consumption, which results in a shorter network lifetime.819

Fig. 5 shows the cost as a function of γth, the number of820

SNs S and M . The results clearly show that RNPEC and821

ACRN outperform TTCR, which is in its turn outperforms822

RRPL. This can be explained as follows: In contrast to RRPL823

and TTCR, RNPEC and ACRN form single-tiered topology,824

where S participate in the data forwarding, which leads to825

the reduction of the number of required relays R . However,826

the use of single-tiered topology has a negative impact on the827

network lifetime as depicted in Fig. 4. While TTCR has a lower828

cost than RRPL. In contrast to RRPL that aims to enhance the829

QoS while deploying a minimum number of RNs, TTCR has830

only one objective, which is the reduction of the number of831

deployed RNs R while forming two-tiered topology. From832

Fig. 5(b), we can observe that the increase on the number of833

S has a positive impact on the cost for RNPEC and ACRN and834

a negative impact for TTCR and RRPL. For TTCR and RRPL,835

the higher the number of SNs S is, the larger the number of836

required RNs for data forwarding becomes. While for RNPEC837

and ACRN, the increase of the number of SNs S leads to838

increase the chances of exploiting these added SNs for data839

forwarding, which reduces the need for extra RNs.840

VII. CONCLUSION841

To extend the network lifetime, constrained relay node842

placement has been deemed an effective scheme in the realm843

of WSNs. In this paper, we have considered the problem of844

increasing the network goodput and enhancing the QoS while845

deploying the minimum number of relay nodes in the network.846

We have devised a solution, named RRPL, that exploits the847

physical model and outage probability to deploy the minimum848

number of relay nodes that have efficient links for handling the849

network traffic. This strategy helped us to increase the goodput850

and network lifetime and to reduce the data transfer delay.851

The simulation results have demonstrated the effectiveness of852

the proposed solution for achieving its design goals. RRPL853

enhanced the baseline approaches with more than 50% in854

terms of network lifetime, goodpud and data transfer delay.855

These gains come at a reasonable increase in the number of856

added relay nodes.857

In future work, the effect of shadowing will be taken into858

account in the physical channel model. The shadowing can be859

neglected in the case of open field scenarios as assumed in 860

this paper. However, for indoor environment or in industrial 861

workplace, the shadowing effect due to the walls and the 862

equipment is significant and cannot be ignored. Therefore, 863

it is important to take into account the shadowing in such 864

scenarios. The inclusion of the shadowing in the physical 865

model will make our investigation more general. Moreover, 866

enhancements to the RRPL algorithm will be proposed to 867

improve the network QoS even in presence of shadowing. 868

APPENDIX A 869

PROOF OF THEOREM 1 870

In this appendix, we derive the proof for the outage proba- 871

bility between two nodes u and v in the network. By definition, 872

the link u − v is in outage if SINRu,v falls below a threshold 873

level γth [19]. This event occurs with a probability Pu,v . In 874

order to determine an expression for the outage probability 875

Pu,v , we need first to compute the CDF of SINRu,v . 876

First, we recall that the expression of the SINR is given by 877

SINRu,v = γu,v

1 + ∑t �=u,v
t∈N γt,v

, (A.1) 878

where γu,v and γt,v are exponential random variables with 879

mean values γ̄u,v and γ̄t,v . Using (2) and (3), the terms γ̄u,v 880

and γ̄t,v can be computed as 881

γ̄u,v = Pu

N0

(
d0

du,v

)η

and γ̄t,v = Pt

N0

(
d0

dt,v

)η

. (A.2) 882

The probability density functions (PDFs) of γu,v and γt,v are 883

given by 884

pγu,v (x) =
⎧
⎨

⎩

1

γ̄u,v
exp

(
− x

γ̄u,v

)
if x ≥ 0

0 otherwise.
(A.3) 885

pγt,v (x) =
⎧
⎨

⎩

1

γ̄t,v
exp

(
− x

γ̄t,v

)
if x ≥ 0

0 otherwise.
(A.4) 886

In order to determine the CDF of the SINR, we need first 887

to compute the PDF of the denominator in (A.1). The term 888∑t �=u,v
t∈N γt,v is a sum of independent non-identically distributed 889

exponential random variables whose PDF can be derived as 890

[27, eq. (14.5)–(26)] 891

p	(x) =

⎧
⎪⎪⎨

⎪⎪⎩

t �=u,v∑

t∈N

Ct,v

γ̄t,v
exp

(
− x

γ̄t,v

)
if x ≥ 0

0 otherwise.

(A.5) 892

where Ct,v = ∏z �=u,v,t
z∈N

γ̄t,v

γ̄t,v − γ̄z,v
. Let Y = 1 + ∑t �=u,v

t∈N γt,v . 893

Using (A.5) and the fundamental theorem for the transforma- 894

tion of random variables [28], we can compute the PDF of Y 895

as 896

pY (y) = p	(y − 1) 897

=
{∑t �=u,v

t∈N
Ct,v
γ̄t,v

exp
(
− y−1

γ̄t,v

)
if y ≥ 1

0 otherwise.
(A.6) 898
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The random variable γu,v follows an exponential distribu-899

tion and its CDF is given by900

Fγu,v (x) = 1 − exp

(
− x

γ̄u,v

)
. (A.7)901

The SINR in (A.1) can be rewritten as SINRu,v = γu,v

Y
. The902

outage probability Pu,v can be evaluated as903

Pu,v904

= P
(
SINRu,v ≤ γth

) = P
(γu,v

Y
≤ γth

)
905

= EY
[
P

(
γu,v ≤ γth y|Y = y

)]
(A.8)906

=
∫ ∞

1
Fγu,v (γth y)pY (y)dy907

=
∫ ∞

1

[
1 − exp

(
−γth y

γ̄u,v

)] t �=u,v∑

t∈N

Ct,v

γ̄t,v
exp

(
− y − 1

γ̄t,v

)
dy908

= 1 −
t �=u,v∑

t∈N

Ct,v
γ̄u,v

γ̄u,v + γ̄t,vγth
exp

(
− γth

γ̄u,v

)
. (A.9)909

In (A.8), the notation EY (·) stands for the expectation910

operation with respect to the random variable Y . For any given911

network topology, we can determine the distance between the912

different nodes and using (A.2) we can compute the parameters913

γ̄u,v and γ̄t,v . Finally, utilizing (A.9), the outage probability914

of any link in the network can be evaluated accurately.915

APPENDIX B916

AVERAGE NUMBER OF RETRANSMISSIONS917

In this appendix, we derive the expression of the average918

number of retransmissions E(Tr ). First, the expression of919

E(Tr ) is derived for a value of M = 2 and afterwards, we920

derive E(Tr ) for a general value of M .921

For a maximal number of rounds M = 2, Tr is a discrete922

random variable that takes values in {1, 2}:923

• Tr = 1, if the transmission of the packet succeeds in the924

first round. The probability of this event is denoted by925

P(S1).926

• Tr = 2, if the transmission of the data packet fails in the927

first round, and we have either success or failure in the928

second transmission round. We denote by P(F1, S2) the929

probability of a reception failure in the first round and a930

reception success in the second round, while P(F1, F2)931

stands for the probability of a reception failure in the first932

and second rounds.933

Hence, we can express E(Tr ) for M = 2 as934

E(Tr ) = 1P(S1) + 2[P(F1, S2) + P(F1, F2)]. (B.1)935

Using the following identities936

P(F1, S2) = P(F1) − P(F1, F2) (B.2)937

P(S1) = 1 − P(F1), (B.3)938

we can simplify the expression of the average number of939

retransmissions in (B.1) as follows940

E(Tr ) = 1 − P(F1) + 2[P(F1) − P(F1, F2)]941

+ 2P(F1, F2) = 1 + P(F1). (B.4)942

For M � 2, we have 943

E(Tr ) 944

= 1P(S1) + 2P(F1, S2) + ... + (M − 1) · 945

P(F1, ..., SM−1) + M[P(F1, ..., F M ) + P(F1, ..., SM )]. 946

(B.5) 947

Using the fact that the following equation holds 948

P(F1, ..., Fm−1, Sm ) = P(F1, ..., Fm−1) 949

− P(F1, ..., Fm), (B.6) 950

for m = 2, . . . , M , the average number of retransmissions can 951

be written as 952

E(Tr ) = 1P(S1) + 2P(F1, S2) + ... 953

+(M − 1)P(F1, ..., SM−1) + M P(F1, ..., F M−1) 954

= 1 − P(F1) + 2[P(F1) − P(F1, F2)] + (M − 1) · 955

[P(F1, ..., F M−2) − P(F1, ..., F M−1)] 956

+ M P(F1, ..., F M−1) 957

= 1 +
M−1∑

m=1

P(F1, ..., Fm). (B.7) 958
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