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Abstract—In this paper, we present SADA, a static analysis
tool to verify device drivers for TinyOS applications. Its broad
goal is to certify that the execution paths of the application
complies with a given hardware specification. SADA can handle a
broad spectrum of hardware specifications, ranging from simple
assertions about the values of configuration registers, to complex
behaviors of possibly several connected hardware components.
The hardware specification is expressed in BIP, a language
for describing easily complex interacting discrete components.
The analysis of the joint behavior of the application and the
hardware specification is then performed using the theory of
Abstract Interpretation. We have done a set of experiments on
some TinyOS applications. Encouraging results are obtained that
confirm the effectiveness of our approach.

I. INTRODUCTION

Robust device drivers play an important role in the reliabil-
ity of operating systems. They are designed to encapsulate the
low-level mechanisms needed to access the device’s functions,
in order to present a more abstract programming interface
for other software components. The implementation of such
mechanisms is generally a laborious and error-prone task.
This difficulty raises from the fact that programmers must
follow very specific software/hardware interaction patterns
as described in the device datasheet, that involve bit-wise
manipulations of MCU registers and often require handling
asynchronous hardware answers via interrupts.

In this paper, we present our static analysis tool SADA
(Static Analyzer with Device Abstraction) for verifying the
correctness of device drivers in TinyOS applications. The basic
idea is to (i) give programmers a means to easily express how
the software should interact with the hardware, and then (ii)
statically check that the different execution paths conforms
with such specifications. For example, the correct CC2420
boot sequence specifies that ”the program should never turn
on the oscillator before starting the voltage regulator”. These
different actions, namely starting the oscillator and the voltage
regulator, are performed via specific CC2420 configuration
registers, which are accessed through an SPI bus managed
by the MCU. Therefore, the program should ensure a reli-
able SPI communication through which correct configuration
commands are performed. SADA can track all these low-
level interactions and verify if the program behaviors perform
the correct patterns of actions. Existing verification tools for
TinyOS, such as [1], can not handle complex specifications
about desired software/hardware interactions. This limitation
is due to the fact that they analyze the program in isolation
without considering the state and the behavior of the hardware,
which may change in reaction to software/hardware interac-
tions.

To facilitate the description of the desired soft-
ware/hardware interactions as well as the behavior of the
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Fig. 1. A BIP atom describing Timer0 stabilization in ATmega128. [E]
denotes a synchronization event and {A} a transition action. The special event
stabilized expresses the asynchronous termination of the stabilization phase.

hardware itself, we use BIP [2], a language for express-
ing complex interacting systems in a compositional manner.
Basically, a BIP model represents a set of Communicating
Sequential Processes. The behavior of a sequential process
is defined by an atom, which is a labeled transition system
extended with data. Each atom can export an external interface
defining which synchronization events (called ports in BIP)
the atom can expect. When linking ports of distinct atoms, we
define synchronization rendez-vous, called interactions, which
represent synchronized transitions among several atoms with
eventual data transfer.

Fig. 1 depicts an example of a BIP model describing a
hardware specification as used in SADA. The model expresses
a stabilization condition of Timer0 in an ATmega128L MCU.
Basically, when this chip is configured in asynchronous mode
with an external 32Khz crystal, one should ensure that the
time between entering a timer interrupt (number 15 or 16)
and returning to sleep mode must be greater than one crystal
cycle. To guarantee this, the MCU datasheet recommends to
write to the control register TCCR0, for example, and wait
until the update flag TCR0UB in the status register ASSR
returns to zero. This execution pattern requirement can be
automatically verified at compile-time by SADA against any
TinyOS application to guarantee that no execution path leads
to the BUG state.

To verify that no error state in a hardware model is reach-
able, we use the theory of Abstract Interpretation [3] which is
a successful formal method for building sound and computable
over-approximations of the semantics of discrete dynamic
systems. SADA performs a forward reachability analysis that
collects the reachable states of the joint dynamics of the pro-
gram and the hardware model. We have implemented several



...
command uint8_t FastSpiBy..
call Spi.write(data);
while(!call Spi.isInter..
return call Spi.read();

}
...
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Fig. 2. Analysis steps in SADA: we atomize the nesC to obtain a BIP atom, we assemble it with the hardware model and the resulting product is then analyzed.
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Fig. 3. A simple scheduler for a typical TinyOS application.

abstract domains for manipulating complex C constructs, such
as arbitrary pointer arithmetic and bit-wise operation, which
extend the previous works of Miné [4].

II. TOOL ARCHITECTURE

We illustrate in Fig. 2 the global architecture of SADA. The
analysis is performed in three steps: atomization, assembly and
analysis. The first two steps aim at unifying the description of
the whole system (software + hardware) as a single BIP model.
The third step statically analyzes this global model to obtain
an over-approximation of the reachable states.

Atomization starts by invoking the ncc compiler in order
to transform the nesC code into a C code which is then
inlined. To transform the resulting C code into an atom, we
have introduced the notion of a scheduler. This special atom
defines the pattern of all program paths to be analyzed. In
other words, it describes how the different program units
(i.e. initialization functions, tasks and interrupt vectors) are
orchestrated during execution. Fig. 3 shows a simple scheduler
for a TinyOS application. This scheduler formalizes the fact
that an application first initializes the platform before booting
the application. Afterwards, waiting tasks are consumed before
entering to sleep. When an interrupt arrives, the corresponding
vector is executed and generated tasks are consumed again.
The final software atom is obtained by replacing the calls
to the different program units in the scheduler (such as
RealMainP__Boot__booted() or __vector_11())
with their implementation in the previously obtained C code.

The second step consists in assembling the software and
hardware models to obtain a system model describing how
these two sub-systems evolve and interact. To do so, we need
to locate and extract all low-level interactions occurring in
these sub-systems: read/write operations to MCU registers,
sleep transitions and interrupts firing. We connect interactions
that are present in both sub-systems and soundly ignore the
other ones. For example, whenever the program performs a

TABLE I. RESULTS

LOC Time MemoryInlining Equations Analysis

Null 1118 0.004s 0.004s 0.06s 17MB
Blink 2376 0.11s 0.4s 8.5s 102MB

RadioCountToLeds 12793 115.0s 21.8s 272.06s 668MB

read to a register that is not handled by the hardware model,
we replace this read with a top value during the analysis.

The last step consists in analyzing statically the dynamic
behavior of the system using Abstract Interpretation. We build
the semantic equations and compute a fixpoint solution, which
represents an over-approximation of the reachable states. If no
BUG location is reachable, SADA deduces that the property is
preserved. However, nothing can be said if BUG is reachable
due to the undecidability of the verification problem.

III. EXPERIMENTS

We have implemented SADA using the OCaml language.
Experiments were performed on a 2.66GHz Intel Core2 Duo
CPU with 2GB memory running Linux 2.6.32. We have used
SADA to verify the timer stabilization condition against three
applications available in the TinyOS distribution: Null, Blink
and RadioCountToLeds. TABLE I gives the obtained results.
In all cases, SADA was able to certify the correctness of
the applications w.r.t. the specified condition. We have also
injected some bogus manipulations inside the stabilization
procedure of the Timer0 driver, such as polling on a wrong
bit in ASSR. Our tool succeeded to catch the bugs.
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